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Abstract
Optimization methods used in economics are applied in situations

where a certain objective function, such as utility or expenditure, is to be
maximized or minimized under constraints such as budget constraints.
Typical methods include the methodology of Lagrange multipliers, which is
used under equality constraints, and the Karush-Kuhn-Tucker condition,
which is used under inequality constraints. Here an overview of each is
provided.
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1．Optimization under equality constraints: the methodology of
Lagrange multipliers

Here, we consider that the objective function y = f (x1, x2, …, xn) is to be
maximized under equality condition�(x1, x2, …, xn) = 0 as below:

Max y = f (x1, x2, …, xn)
s.t.1）

�(x1, x2, …, xn) = 0
(1.1)

One of methods for solving optimization problems under equality
constraints is the methodology of Lagrange multipliers. The Lagrange
multiplier λ to construct the Lagrange function is introduced as follows:

L (x1, x2, …, xn, λ) = f (x1, x2, …, xn) - λ�(x1, x2, …, xn)
(1.2)

1） “s.t.” is an abbreviation of “subject to”. It means “subject to the following conditions.”
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To obtain the solution x* = {x1＊, x2＊, …, xn
＊} that maximizes the function f ,

we set the gradient of the Lagrangian function, i.e., the partial derivative of
L(x1, x2, …, xn, λ) with respect to the variables x1, x2, …, xn, and λ to zero.
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(1.3)

The first equation is just for deriving the equality constraints, so it
does not play any significant role in calculating the optimal solution. The
second and subsequent equations are meaningful. That is,
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(1.4)
Let’s move the second term on the left side of the above equation to

the right side and rewrite it in vector form. That is,
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(1.5)

An interesting property can be seen from equation (1.5). It shows that
the vector with elements�f /�xi (i = 1, n) and the vector with elements��/
�xi (i = 1, n) are in a parallel positional relationship via the Lagrange
multiplier λ. The vector in equation (1.5), which lists the derivatives of
functions f , �, is called the gradient vector, and is expressed as ∇f ,∇�
using the operator gradf , gradg, or ∇ (nabla).
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Figure1. 1 Two parallel vectors ∇f, ∇�

Figure1.2 Contours and constraints of a function f

Now, consider f (x) = C (C is a constant, x = (x1, x2, …, xn). This can be
considered as an isoquant of f (x) projected onto the n-dimensional x-plane.
In other words, if we liken f (x) to the height of a mountain drawn against x,
then f (x) = C corresponds to the contour line cut off at the value of C.
Furthermore, the constraint �(x) = 0 is located along the mountainside of
the function f (x). Therefore, the problem of maximizing the function f (x)
becomes the problem of finding the maximum value among the points on
the constraint�(x) = 0 that are along the function f .

Take a point x = (x1, x2, …, xn) on this contour line f (x1, x2, …, xn) = C, and
consider f (x + Δx) at a point that is shifted from that point by an
infinitesimal amount, Δx = (Δx1, Δx2, …, Δxn). This can be calculated by
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applying the first-order approximation of the Taylor expansion.
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(1.6)
In this case, Δx = (Δx1, Δx2, …, Δxn) is considered to be the tangent vector

of f (x1, x2, …, xn) = C at point x, and by considering Δx to be a sufficiently
small quantity, the point (x1+ Δx1, x2+ Δx2, …, xn+ Δxn) is also considered to be
located on the same curve. Therefore:

f (x + Δx) = f (x1+ Δx1, x2+ Δx2, …, xn+ Δxn) C
(1.7)

Then, by substituting this into equation (1.6), we get:
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(1.8)
If we express this as a vector dot product, then we get:
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(1.9)
Equation (1.9) shows that the two vectors are perpendicular. The

vector Δx is the tangent vector at point x of the curve f (x1, x2, …, xn) = C, and
the vector ∇f perpendicular to it is the normal vector of the curve f (x1, x2,
…, xn) = C. At the same time, according to equation (1.5), since ∇f = λ∇�, ∇
�is parallel to ∇f , and therefore ∇�is also perpendicular to the tangent
vector Δx. In other words, at point x where the objective function is
maximized, the curve f (x1, x2, …, xn) = C and the curve �(x1, x2, …, xn) = 0,
which indicates the constraint, are mutually tangent, as shown in the
following Figure 1.3.
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Next, let’s suppose that f (x1, x2, …, xn) and�(x1, x2, …, xn) do not touch with
each other, but intersect. Look at Figure 1.4. The gradient vectors ∇f and
∇�are not parallel but point in different directions. Now, in the area
adjacent to the curve f (x1, x2, …, xn) = C, for instance, as shown in Figure 1.4,
f increases as it moves toward the area to the left of the curve, while f
decreases as it moves toward the area to the right. The constraint

Figure1.3 The case that such two functions as f and g are tangent to each other

Figure1.4 The case that two functions f and�are not tangent to each other
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equation �belongs to both areas, so it is just like lying on a slope halfway
up a mountain. Therefore, the point x (x1, x2, …, xn), where f (x1, x2, …, xn) and�
(x1, x2, …, xn) intersect, is located halfway down the mountain, so the
maximum value can not be found there.

As we have seen above, the Lagrange multiplier method is a
technique giving the solution λ＊ and xi

＊ as the solution that maximizes, or
minimizes the function f when the gradient vector ∇L of the Lagrange
function L ( f ,�, λ) = L (x, λ) is set to zero. Namely:
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(1.10)

2. Optimization problems under inequality constraints: Karush-Kuhn-
Tucker condition
So far, we have discussed the Lagrange multiplier method, which

solves the problem of maximizing, or minimizing the objective function y =
f (x1, x2, …, xn) subject to the equality constraint �(x1, x2, …, xn) = 0. However,
there are cases where there are multiple constraints, or where each
constraint is an inequality condition with a specified range. In equation
form, the problem can be expressed as follows:

Max y = f (x1, x2, …, xn)
s.t.
��(x1, x2, …, xn)�0
xi�0

(i = 1, 2, …, n)
(2.1)

The Karush-Kuhn-Tucker condition, or KKT condition for short, gives
us a way to solve optimization problems under inequality constraints.
When the constraints are inequalities, the discussion becomes a little more
complicated. For now, let’s consider a one-variable function as a simple
case. First, consider the following simple optimization problem.
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Max y = f (x)
s.t.
�(x)�0

(2.2)
Here, we will construct the Lagrange function L (x, λ) in the same way

as in the Lagrange multiplier method. That is:

L (x, λ) = f (x) - λ・�(x)
(2.3)

Calculates the gradient of the Lagrange function L (x, λ). That is:
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Here, if x＊ is the solution that maximizes y = f (x), then there are two

possible patterns for x＊ in relation to the constraints. One is when x＊ is
located inside the constraint �(x)�0. This type of solution is called an
interior solution. It is literally a solution inside the constraints. In this case,
x＊ is equivalent to the problem of finding the maximum value in a situation
where there are no constraints. Therefore, constraints are no longer
necessary, which can be expressed by setting λ = 0 in the first equation in
equation (2.4), and the maximum value can be found with only the first-
order condition for maximizing the function y = f (x). That is:

【Conditions for maximum value being an interior solution】
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(2.5)
On the other hand, there are cases where x＊ lies on the edge of the

constraints. This is known as a corner solution. In other words, if there
were no constraints, it would be possible to find x＊ outside the constraints,
which would allow the function y = f (x) to be more easily maximized.
However, because of the constraints, we are forced to consider the x＊
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Figure 2.1 Interior and corner solutions

obtained at the very limit of the range in which the maximization problem
can be considered as the solution. Therefore, in this case, the constraints
will be in the form of �(x) = 0, which is an equality constraint, and so it
becomes the same maximization problem as the Lagrange undetermined
multiplier method. Namely:

【Conditions when the maximum value is a corner solution】
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(2.6)
The image of the interior point solution and the the corner solution is

shown as below:

So, what conditions in the maximum problem change between the
interior solution and the corner solution? In the case of an interior solution,
λ = 0 is true regardless of the constraint�(x)�0. On the other hand, in the
case of a corner solution, the constraint �(x) = 0 is true regardless of λ. In
other words, if either an interior solution or a corner solution is the optimal
solution, the possible situations are either λ = 0 or �(x) = 0, and this
situation will always occur in one of the two cases. If we were to express
this in an equation, we could write it as follows.
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λ・�(x＊) = 0
(2.7)

Furthermore, from equation (2.6),�L (x, λ)/�λ = -�(x), therefore:
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(2.8)
This is called the complementarity condition of the KKT conditions.

Using this complementarity condition, we can write the maximization
problem that encompasses both the interior and extreme solutions as
follows. That is, by applying a nonnegative Lagrange multiplier λ.

L (x, λ) = f (x) - λ・�(x)
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(2.9)
The third equation in the group of equations (2.9) is the constraint

equation itself, but because of the form of the Lagrange function, �L (x, λ)/
�λ = -�(x), and since the constraint�(x)�0 has a negative sign, we obtain
�L (x, λ)/�λ�0. Next, let’s deepen our understanding of KKT conditions by
looking at a more specific problem. This time, we will consider the problem
of minimizing an objective function of two variables under three inequality
constraints.

Min y = f (x, y)
s.t.
��(x, y)�0，��(x, y)�0，��(x, y)�0

(2.10)
The Lagrangian function is set as follows:
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The KKT conditions are as follows:
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λ1�0，λ2�0，λ3�0
(2.12)

To understand the KKT condition geometrically, let us plot the three
constraints and the objective function on the x, y plane.

In Figure 2.2, the curves of the three inequality constraints are shown
with dashed lines, and the contour of the objective function f (x, y) = C is
drawn as a solid ellipse. The overlapping common area of the inequality
constraints ��(x, y)�0 (i = 1,3) is shown with hatching, and in this hatched
area, a solution (x＊, y＊) that minimizes the objective function f (x, y) is
sought. In the figure, the optimal solution is given at the intersection of ��
(x, y) = 0 and ��(x, y) = 0, which is the so-called a corner solution for the
constraints��(x, y) = 0 and��(x, y) = 0. On the other hand, since the point of
this optimal solution is within the area of ��(x, y) > 0, it is an interior
solution for��(x, y)�0. From these, the constraints are:
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Figure2.2 Geometric interpretation of KKT conditions

��(x, y) = 0， λ1�0
��(x, y) = 0， λ2�0
��(x, y)�0， λ3= 0

(2.13)

Rewriting the KKT condition (2.12), by taking into account of (2.13), it
gives:
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λ1�0，λ2�0，λ3＝0
(2.14)

If we rewrite the right-hand sides of the upper two equations in (2.14)
in vector notation, we get:
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∴∇f = λ1∇��+ λ2∇��

(2.15)
Equation (2.15) shows that at the optimized point, the gradient of the

objective function can be expressed as a linear combination of the
gradients of the constraint equations λ1, λ2. This shows the mechanical form
in which the gradient vector of the objective function, which has been
reversed in the Figure 2.2, is balanced by a resultant vector obtained by
linearly combining the gradient vector of the constraint equations in a
manner similar to the composition of the forces of a parallelogram.

3. Saddle point problems and the Karush-Kuhn-Tucker (KKT) condition
(1) Saddle point and optimization problem

Here, we will deal with the saddle point problem in relation to the
KKT conditions. The term “saddle point” is named after the image of a
point on a horse’s saddle. For example, the saddle point of the two-variable
function z = f (x, λ) is the point z＊ in Figure 3.1.

At the saddle point z＊= f (x＊, λ＊), for�x, λ∈RR, following conditions can
be identified:

f (x＊, λ＊)�f (x＊, λ)
f (x, λ＊)�f (x＊, λ＊)

(3.1)
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Figure 3.1 A saddle point

When x = x＊ is fixed, f (x＊, λ) will be at its minimum when λ = λ＊, and
on the other hand, when λ = λ＊ is fixed, f (x, λ＊) will be at its maximum
when x = x＊. And as for the Lagrangian function L (x, λ) that we have been
discussing up until now, when (x, λ) is in fact a saddle point (x＊, λ＊), we can
say that x＊ is the optimal solution that maximizes, or minimizes the
objective function f (x), which constitutes the Lagrangian function. In other
words:

For x�RRn
+, consider the following maximization problem as follows:

Max f (x) s.t. ��(x)�0 (i = 1, m)
(3.2)

In this case, the Lagrange function can be set:
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(Where λ�RRm
+)
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(3.3)
For (x＊, λ＊), (x＊, λ＊) is a saddle point of the Lagrangian function L (x, λ),

i.e.,

L (x, λ＊)�L (x＊, λ＊)�L (x＊, λ)
(3.4)

In this case, x＊ is the optimal solution that maximizes the objective
function f (x). Let us prove this below. Rewrite the inequality L (x＊, λ＊)�L
(x＊, λ) on the right side of equation (3.4) as follows:
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(3.5)
In equation (3.5), for any λi	 0, λi＊��(x＊)� λi��(x＊), but this inequality

does not hold when��(x＊) < 0, considering sufficiently large λi, so��(x＊)	0
must hold. Also, since
λi＊	0, therefore:
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(3.6)
On the other hand, if we perform the limit operation on the right-hand

side of equation (3.5) by setting λi→ 0 for all i, we get:
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(3.7)
From equations (3.6) and (3.7), the following relationship can be

derived:
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Rewrite the inequality L (x, λ＊)�L (x＊, λ＊) on the left side of equation

(3.4) as follows:
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(3.9)
Substituting equation (3.8) into the right hand side of equation (3.9), we

get:
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From the premise,	λ
RRm

+,��(x)�0 (i = 1, m), so,
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∴f (x)�f (x＊)
(3.11)

When (x＊, λ＊) is a saddle point, the objective function f (x＊) reaches its
maximum value.

(2) Saddle point problems and KKT conditions (as necessary conditions)
In fact, the KKT condition is a necessary condition for a saddle point

problem. However, it is not a sufficient condition. If we illustrate it, the
relationship between the two can be expressed as follows:
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(Sufficient condition) (necessary condition)
If a saddle point is given, then KKT conditions hold
If the KKT conditions hold, then a saddle point is given.

The saddle point conditions as sufficient conditions and the KKT
conditions as necessary conditions are listed below.

【Saddle point condition as a sufficient condition】
Consider the following maximization problem for x�RRn

+ :

Max f (x)
s.t. ��(x) = xi�0 (i = 1, n)

(3.12)
In this case, the Lagrange function is:
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(3.13)
(x＊, λ＊) is a saddle point of the Lagrangian function L (x, λ), i.e.,

L (x, λ＊)�L (x＊, λ＊)�L (x＊, λ)
(3.14)

At this time, the following relationship holds at the saddle point (x＊, λ＊).

【KKT conditions as necessary conditions】
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(3.15)
This maximization problem is a problem where the constraints are

that the variables xi (i = 1, …, n) are non-negative. Let’s look at the proof
again. First, from the left side of equation (3.14),
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L (x, λ＊) - L (x＊, λ＊)�0
(3.16)

Namely:

L (x1, x2, …, xi, …, xn, λ＊) - L (x1＊, x2＊, …, xi
＊, …, xn

＊, λ＊)�0
(3.17)

Here, we use the real number h and set xi= xi
＊ + h, equation (3.17)

becomes:

L (x1, …, xi
＊+ h, …, xn, λ＊) - L (x1＊, …, xi

＊, …, xn
＊, λ＊)�0

(3.18)
Here, we define the function F (x＊, λ＊, h) as follows:

F (x＊, λ＊, h) = L (x1, …, xi
＊+ h, …, xn, λ＊) - L (x1＊, …, xi

＊, …, xn
＊, λ＊)

h
(3.19)

In this case, depending on the sign condition of the real number h,

When h > 0: F (x＊, λ＊, h)�0
When h < 0: F (x＊, λ＊, h)�0

(3.20)
When xi

＊> 0, for any xi
＊, a real number h such that xi

＊+ h� 0 can be
obtained regardless of its sign, so if we perform the limit operation of h→0
in each of the cases h > 0 and h < 0, F (x＊, λ＊, h) , which is between the
relational expressions in equation (3.20), will converge to zero.
Furthermore, F (x＊, λ＊, h) during the limit operation has the meaning of the
partial differential coefficient of xi with respect to the Lagrangian function
L (x, λ＊), and this means that this converges to zero. That is:

���
���
��������� ��

�������� �
���

��

(Where xi
＊ > 0)

(3.21)
This shows that xi

＊ is actually an interior solution to the constraint
condition. It can be illustrated as in Figure 3.2 as below. In other words, the
fact that the first-order partial differential coefficient of the Lagrangian
function at the saddle point xi

＊, which has a positive sign, is zero means that
the Lagrangian function has reached its maximum value within the range
of the constraint condition xi

＊ > 0.
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On the other hand, consider the case where the solution is a corner
solution, that is, when L (x, λ＊) is maximized at the point xi = 0 under the
non-negativity condition xi�0. When xi = 0, xi

＊ + h� 0 is clearly the case
when h�0. Therefore, in equation (3.20), if we perform the limit operation
of h → 0 using the relationship F (x＊, λ＊, h)�0 when h > 0, we will get:
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(Where xi
＊ = 0)

(3.22)
The solution xi

＊ shown in equation (3.22) represents the case of an
extreme solution. Let’s illustrate this again in Figure 3.3. xi

＊ = 0 means that
the maximum value of the Lagrangian function L (x, λ＊), which is the
objective function, is obtained at the very boundary of the non-negative
condition of xi, which is the constraint. As shown in Figure 3.3, the slope of
the function L (x, λ＊) at the optimal solution xi

＊ = 0 is not zero, but is
negative, which is shown in the inequality condition in equation (3.22).

Figure 3.2 A pattern of interior solution

74



To summarize the above, the KKT condition at the saddle point (x＊,
λ

＊) is:
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(3.23)
If we rewrite this in the form of complementarity conditions, we can

get:
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(3.24)
This is true for all i = 1, …, n, so:

Figure 3.3 A pattern of corner solution
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Figure 3.4 Patterns of interior and corner solutions of λj
＊
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(3.25)
This coincides with equation (3.15). Using the same procedure, we

expand the inequality condition on the right side of equation (3.14), L (x, λ＊)
�L (x＊, λ＊), with respect to λ＊, and we get:
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(3.26)
The upper equation in (3.26) is the interior solution under the

constraints on λj＊, and the lower solution corresponds to a corner solution.
If illustrated, it can be seen as the following Figure 3.4.

If we rewrite this in the form of complementarity conditions, we can
get:

76



�������� �
���

��, ��
����

����� �
���

��

(3.27)
This is true for all j = 1, …, n, so:
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(3.28)
Now, to reiterate, the KKT conditions are necessary but not sufficient

conditions for the conditions that give a saddle point, in other words, the
conditions that give an optimal solution. Therefore, just because the KKT
conditions are satisfied does not necessarily mean that the optimal solution
will be given. However, by adding certain conditions, the KKT conditions
become necessary and sufficient conditions for giving an optimal solution.
These are the conditions for the convexity and concavity of the objective
function. In other words, for the objective function L (x, λ),

If the KKT conditions are satisfied and the objective function L (x, λ)
is concave with respect to x and convex with respect to λ, then the
optimal solution x＊ (≡saddle point) is determined.

Let’s prove this. First, the fact that the objective function L (x, λ) is a
concave function with respect to x can be expressed as follows. That is,
after fixing λ = λ＊, for any two points xi

＊, xi (where xi
＊≠xi) in x�RR +

n ,

�
���

�

��
����� �

�������� �
���

	������� �������� �

(3.29)
We will prove this formula below. First, the condition for the concavity

of the objective function L (x, λ) is
α�RR+ (where 0	α	1),

L (αx + (1 - α) x＊, λ＊)�αL (x, λ＊) + (1 - α) L (x＊, λ＊)

L (x＊ + α (x - x＊), λ＊) - L (x＊, λ＊)�α (L (x, λ＊) - L (x＊, λ＊))
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∴L (x＊ + α (x - x＊), λ＊) - L (x＊, λ＊)
α

�L (x, λ＊) - L (x＊, λ＊)

(3.30)
Here, let h = x - x＊ and use the mean value theorem:

������������ �
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���������� ��������� �

��

(Where, θ	 (0,1))
(3.31)

Applying this to the left side of equation (3.30), we get:
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(3.32)
From equations (3.30) and (3.32),
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(3.33)
Now, when we perform the limit operation of α→ 0,
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(3.34)
Furthermore, multiplying both sides of equation (3.34) by -1 and

rearranging, we get:
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(3.35)
Here, we obtain equation (3.29). Up to this point, we have shown the

conditions for concaveness with respect to the variable x, but the same can
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be said for λ. Therefore, the objective function L (x, λ) being a convex
function with respect to λ is equivalent to the following equation being true.
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�������� �
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�������� �������� �

(3.36)
For concave and convex functions, the inequality signs are reversed,

as in equations (3.35) and (3.36).

(3) Saddle point problems and KKT conditions (as sufficient conditions)
Based on the above considerations, let us next prove that the KKT

conditions and the convexity and concavity conditions of the objective
function are sufficient conditions for the saddle point problem. This can be
expressed as follows.

【KKT conditions as sufficient conditions, and convexity and concavity
conditions】

For x	RRn
+, the following maximization problem:

Max f (x)
s.t.
��(x) = xi�0 (i = 1, n)

(3.37)
And the Lagrange function constructed from non-negative Lagrange

multipliers λ	RRn
+,

����� ������
�
���

�

���� ���

(3.38)
For the above function, the KKT condition for the solution (x＊, λ＊) is:
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�� (i = 1, 2, …, n)

(3.39)
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(3.40)
Furthermore, the concavity condition with respect to x for the

Lagrangian function:
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(3.41)
And the convexity condition for λ:
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(3.42)
If the above conditions are met, then the following conditions are met:

【A saddle point condition on (x＊, λ＊) as a necessary condition】
(x＊, λ＊) is a saddle point of the Lagrangian function L (x, λ) and satisfies

the following relation:

L (x, λ＊)�L (x＊, λ＊)�L(x＊, λ)
(3.43)

In other words, the KKT condition and the convexity and concavity
conditions of the objective function are necessary and sufficient conditions
for the saddle point condition to hold. We will prove this below. The proof
will not take many pages. First, from the concavity condition of equation
(3.41),
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(3.44)
From the complementarity condition for xi in equation (3.39),
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(3.45)
Substituting this into equation (3.44), we get
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(3.46)
Furthermore, from equation (3.39),
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��(i = 1, 2, …, n)

(3.47)
Therefore, the right hand side of equation (3.46) becomes
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∴L (x, λ＊)�L (x＊, λ＊)
(3.48)

Moreover, by the convexity condition in equation (3.42),
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(3.49)
Substituting the complementarity condition of (3.40) into (3.49), we get
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(3.50)
From equation (3.40),
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��( j = 1, 2, …, n)

(3.51)
Therefore, the right hand side of equation (3.50) becomes

������� ���
���

�

���
�������� �
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�������� �

∴L (x＊, λ)�L (x＊, λ＊)
(3.52)

From equations (3.48) and (3.52),

L (x, λ＊)	L (x＊, λ＊)	L (x＊, λ)
(3.53)

Here we obtain equation (3.43).

Optimization problems under inequality constraints are quite
complicated, and there may have been many parts that were difficult to
understand compared to the Lagrange multiplier method, which is used to
solve optimization problems under equality constraints.

As we have seen, the method using the Karush-Kuhn-Tucker
condition, which is an optimization problem under inequality constraints, is
a more general method that encompasses the Lagrange multiplier method,
which is an optimization problem under equality constraints. In other
words, the problem of solving the endpoint solution within the KKT
method can be said to be the Lagrange multiplier method.

The method using the Karush-Kuhn-Tucker condition, which is an
optimization problem under inequality constraints, requires various case
distinctions, so it is much more complicated than the Lagrange multiplier
method, which is an optimization problem under equality constraints, and
it feels redundant in that the solution is not straightforward.
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